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We survey the classic CNF (Conjunction Normal Form) Satisfiabil-
ity problem and then proceed to demonstrate it’s NP Completeness
by means of a comparatively terse proof in contrast to the tradi-
tional Cook-Levin[1, 2, 3], yet explanatory in certain points that
might not otherwise seem intuitive.

The Satisfiability (SAT) problem is defined by of a boolean formula in Con-
junction Normal Form (CNF). The CNF form requires a formula to contain a
conjunction of clauses, each a disjunction of literals. Here’s one example:

(x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
c1

∧ (x2 ∨ x3 ∨ x4)︸ ︷︷ ︸
c2

∧ (x1 ∨ x3)︸ ︷︷ ︸
c3

The above example consists of clauses c1, c2, c3, variables x1, x2, x3, x4, and
literals x1, x2, x2, x3, x3, x4.

The formula is satisfiable if a variable truth assignment exists that causes the
formula to evaluate to true. For example, the assignment x1 = True, x2 = False
causes the above formula to evaluate to true irrespective of the other variable
assignments.

The decision version of the SAT problem simply determines whether some
truth assignment exists.

Theorem. SAT is NP Complete.

Proof. 1) SAT ∈ NP: Construct a Nondeterministic Turing Machine (NTM)
to nondeterministically explore each possible truth assignment t of the SAT
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formula Ψ. For each t, a polynomial computation trivially suffices to determine
if t satisfies the formula.

2) SAT is NP Hard: Let’s generate a polynomial reduction from all languages
L ∈ NP to SAT by leveraging a NTM M deciding L and creating a series of
SAT clauses corresponding to all of the valid configurations and transitions of
M . We’ll proceed to show that L ∈ NP if and only the resulting formula Ψ
has a satisfying truth assignment, or rather, M accepts input w if and only Ψ
evaluates to true.

First, provided that L ∈ NP , we can assume that based on input of length
n, the NTM M will require a polynomial number steps to execute, p(n). Let
M = (Q,Σ,Γ, δ, q0, qa, qr), defining the states, input alphabet, tape alphabet,
transition function, initial state, accepting state, and reject state. Now, let’s
construct a SAT formula Ψ in terms of the components of M and the function
p.

States At step i M must reside in precisely one state. Let a variable Qij

be true if and only if at step i M is in state j, for i ∈ {0, ..., p(n)}
and j ∈ {1, ..., |Q|}. From here on, let us also assume, without loss of
generality, that M remains on the positive side of the tape1.

The complexity described to the right reflects the number of tape symbols
necessary to encode the corresponding clauses. We exclude the M -defined
constants |Q|, and later |Γ|, from the complexity, and require O(log n) bits
to encode each literal. In fact, the reduction time complexity corresponds
nearly to the encoding length complexity but without the logarithmic
factor, and omitted from further analysis.

Clause Encoding Complexity
(Qi0 ∨Qi1 ∨ ... ∨Qi|Q|) ∀i O(|Q|p(n) log n) = O(p(n) log n).
(Qij ∨Qij′) ∀i,∀j 6= j′ O(|Q|2p(n) log n) = O(p(n) log n)

Tape Head At step i, the tape head can only reside in one position j ∈
{0, ..., p(n)}. Let the variable Hij designate this position. Note that after
p(n) steps, the tape head could have moved at most p(n) cells to the
right.

Clause Encoding Complexity
(Hi0 ∨Hi1 ∨ ... ∨Hi,p(n)) ∀i O(p2(n) log n)
(Hij ∨Hij′) ∀i, ∀j 6= j′ O(p3(n) log n)

1To the contrary, we would consider 2p(n) possible cell positions, a growth of only a constant
factor
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Tape The tape must contain only one symbol per square per step. Let Sijk be
true if at step i the tape contains symbol k ∈ {0, ..., |Γ|} at square j.

Clause Encoding Complexity
(Sij0 ∨ Sij1 ∨ ... ∨ Sij|Γ|) ∀i, j ∈ {0, ..., p(n)} O(|Γ|p2(n) log n) = O(p2(n) log n)

(Sijk ∨ Sijk′) ∀i, j ∈ {0, ..., p(n)},∀k, k′.k 6= k′ O(|Γ|2p2(n) log n) = O(p2(n) log n)

Initial Configuration At step 0 M contains the initial configuration, including
the initial state q0, head position over first square, the input w written
on the first part of the tape, and the rest of the tape blank.

Clause Encoding Complexity
(Q0,q0) O(log n)
(H01) O(log n)
(S01w1 ∨ S02w2 ∨ ... ∨ S0|w|w|w|) O(|w| log n) = O(log n)

(S0,|w|+1,0 ∨ ... ∨ S0,p(n),0) O(p(n) log n)

Terminates in accepting state By step p(n), M has entered an accepting
state qa.

Clause Encoding Complexity
(Qp(n),qa) O(log n)

Transitions Here we construct clauses corresponding to accepting configura-
tions by successive steps in M . The first series of clauses insures that a
cell symbol does not change unless the tape head resided in that cell at
the previous step.

The second series of clauses insures that an invalid transition cannot
occur. For example, with M in state k at step i, and the head over cell j
containing symbol l (the first three literals unsatisfied), for any invalid
transition (qk′ , sl′ ,∆) /∈ δ(qk, sl), at least one of the second three literals
must be satisfied. By satisfying these clauses, we leave the possibility of
only valid transitions having occurred.

Clauses:

(Hij ∨ Sijl ∨ Si+1,j,l)

(Hij ∨Qik ∨ Sijl ∨H(i+1)(j+∆) ∨Q(i+1)k′ ∨ S(i+1)jl′

∀i, j ∈ {0, ..., p(n)}, k ∈ {1, ..., |Q|}, l ∈ {0, ..., |Γ|}, and any (qk′ , sl′ ,∆) /∈ δ(qk, sl)

Encoding Complexity: O(|Q|2|Γ|2p2(n) log n) = O(p2(n) log n)
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The above conjunction of clauses in formula Ψ is satisfied if and only if w ∈ L,
that is, machine M yields an accepting computation on input w. We have
demonstrated the polynomial reduction encoding length with respect to input
of size n, with the respective O(log n) factor added to account for encoding
each literal. The reduction computation itself also incurs the same polynomial
cost (without the log factor) to iterate all combinations of steps and cells and
generate the appropriate clauses, with Q and Γ constant.
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