
Computability: Extremely Short Guide

Vitaly Parnas

March 09, 2018

I summarize the typical content in the Theory
of Computation[1], omitting detailed proofs and
focusing on the higher level concepts. This area
helps develop intuition in determining what sorts
of problems are theoretically possible to address
on a modern computational unit and what prob-
lems cannot be computed.

Helpful prerequisites: Asymptotic notation,
set-builder notation.

Language building blocks
and operations

A language, not to be confused with a more com-
mon association of a programming language, is
a fundamental entity in the theory of computa-
tion that can represent a set of inputs valid in a
certain domain (equivalent to a valid input in a
modern computer program), or a more abstract
set of strings conforming to certain rules, such as
{banana, tractor} or a set of all even numbers.
A string, accordingly, consists of symbols from a
certain alphabet such as {a, b, 0, 1}.

Languages can undergo operations such as a con-
catenation (a combination of all strings from mul-
tiple languages), kleene star (*) and plus (+)
operations familiar from regular expressions, as
well as set theory union, intersection, and com-
plement operations.

Countability

A crucial measure in leading to determine what’s
computable is countability. Any set is countable

if it maps to natural numbers, or more intuitively,
if you can simply count each element. You could
argue that any set is countable - you simply count
the elements: 1, 2, 3... However, the matter
complicates once we introduce sets of other sets.

A countable union of countable (possibly infinite)
sets is still countable, although we must count the
sets in a particular diagonal fashion. If you were
to simply count each set horizontally - sequen-
tially, you would never reach the end of an infinite
set before being able to proceed to the next. Sim-
ilarly, if you counted vertically, in presence of an
infinite number of sets, you would never proceed
past the first element of any individual set.

A set of languages over a finite alphabet, how-
ever, is uncountable. Let’s imagine a set of all
infinite binary strings, a simple case. The proof
involves the diagonalization trick, which leads to
a paradox: if we vertically stack different infi-
nite binary strings, at some point the set must
include a valid language in, let’s say, position k,
Lk = {xi|xi /∈ Li}, that is, Lk must be different
from every preceding row in the table, and ef-
fectively the bit in the ith position becomes the
opposite of the corresponding bit in language Li.
Consequently, the kth bit in language Lk must
be the opposite of itself, which leads to a para-
dox. This may seem strange, but intuitively, a
set leading to elements that you cannot express,
is uncountable.

A powerful corollary to the above is that a set
of all binary functions is uncountable and hence
exist some functions we cannot write programs
for or even conceptualize.

1



Turing Machines

A Turing Machine is an abstract model of any
computational unit. Anything that is computable
in a modern sense, can, theoretically (albeit im-
practically), be modelled by a TM. A TM consists
of an infinite tape of cells, the current tape posi-
tion, the tape alphabet (ex: symbols 0 and 1), the
tape contents, a set of states (such as in a finite
state machine), a transition function mapping
the current state and cell content in the present
tape position to a new state, new (or unchanged)
cell content, and movement left or right along
the tape. A TM also includes an initial state, an
accept state, and a reject state.

A language of all even numbers, for example, is
decided (computed) by a TM if it reaches an ac-
cept state upon any valid input (an even number),
and a reject state upon anything that’s not an
even number. The TM cannot loop forever if it’s
considered a decider - it must eventually accept
or reject all inputs. A softer variant, a recognizer,
is a TM that must simply accept any valid input,
and not accept an invalid input, although it could
indefinitely loop.

Machine Equivalence

Anything that’s computable by a modern CPU
is computable by a TM and vice-versa. This
includes other, more elaborate TM models. For
example, one such model is a Stay Put TM, which
allows the tape head to stay put after a transi-
tion instead of proceeding left or right. Another
model, frequently handy in demonstrating a lan-
guage complexity class or equivalence to other
models is a multitape TM, with a more elaborate
transition function that can transition and modify
each tape independently upon each step. In addi-
tion, a RAM model resembles a more traditional
CPU, containing registers, a program counter,
a program consisting of a series of possible in-
structions, and a single-instruction read/write
memory. The RAM model can be simulated by a
multitape TM with different tapes corresponding
to the individual RAM model components.

In general, all of these models are equivalent

in the sense that one can simulate another ir-
respective of the increase or decrease in model
complexity, as long as the simulation complexity
is limited by a polynomial factor - that is, the
simulation of one model by another is of O(nk)
complexity and does not incur an exponential
cost (with respect to input size). A single-tape
TM can simulate a multitape TM, for example, by
means of an expanded alphabet containing hash
symbols and dots, allowing keeping multi-tape
contents on one tape via separators and using
dots to mark individual head positions.

Universality

A TM can receive another TM encoded as input,
simulate the encoded TM, and accept/reject as
the encoded TM would. In fact, this is represen-
tative of what happens in a modern computer
that stores different programs on disk, loads them
into memory on demand, and executes them. A
3-tape TM can respectively receive an encoding
of another TM on one tape as input, use the
second tape to store and analyze the transitions,
and the third tape to track current state.

Recognizability/Decidability

A language is considered recognizable if exists
some TM that can recognize it (accept if the
input is valid for the language). Similarly, a lan-
guage is decidable if some TM can decide the
language - not only accept valid input but re-
ject the invalid. Intuitively, if a language and
it’s complement are recognizable, the language
is decidable. Demonstrating this fact requires
running two TMs for each, incrementally, and in
parallel, since passing invalid input to a machine
recognizing a certain language can cause it to
loop forever if the machine doesn’t reject, while
not giving a chance to the second machine that
would recognize the complement, accepting this
same input as valid.

Here’s an example of an undecidable language:
L = {< M > |M doesn’t accept < M >}. This
is a language that takes a machine M encoded
as input, and accepts if and only if M doesn’t ac-

2



cept the encoded version of itself. Demonstrating
undecidability of L involves a similar diagonal-
ization trick as the uncountability of a set of
languages or infinite binary strings. It results in
a paradox.

Mapping Reductions

A mapping reduction is a way to demonstrate
decidability or undecidability of a language with
respect to another language of which this factor is
already known. Language A is mapping reducible
to B if there exists a computable function f such
that an input w is valid in A if and only if f(w)
is valid in B. In other words, the entire set of
valid input in A is mapped to some valid input(s)
in B, and not necessarily in one-to-one fashion.
Providing such a mapping reduction for a lan-
guage demonstrates that B is at least as hard as
A. As a consequence, knowing A is undecidable
implies that B is undecidable, and knowing B is
decidable implies that A is decidable. Such proofs
generally involve only that: constructing a Tur-
ing Machine that computes a mapping reduction
from one language to another, the decidability
of one of which we already know, which unravels
the decidability or undecidability of the other by
one of such implications.

Halting Problem

The Halting Problem, HTM = {< M,w > |M
halts on w}, is a language that receives a TM
M and a string w encoded as input, and accepts
if M halts (accepts and rejects) appropriately
on w. This is an undecidable problem, proven
by a mapping reduction from a number of other
undecidable languages. The important implica-
tion of the halting problem involves infinite loops.
We cannot reliably check a modern program for
the existence of an infinite loop. We can cer-
tainly detect if a program terminates, in respect
to which, HTM is actually recognizable, since we
can build a machine to accept upon a valid in-
put. The converse, however, is not practically
detectable. Intuitively, there is no way to defini-
tively determine if a supposedly looping machine

will ultimately terminate.

References

[1] Michael Sipser. Introduction to the Theory
of Computation. Course Technology, Boston,
MA, third edition, 2013.

3


