
Space Complexity: Short Guide

Vitaly Parnas

March 23, 2018

I briefly introduce the notion of Space
Complexity[1] in the scope of other complexity
classes, and then proceed to discuss the relevant
complexity classes PSPACE, NPSPACE, L, NL,
as well as PSPACE and NL completeness.

Helpful prerequisites: Asymptotic notation,
set-builder notation, Turing machines, computa-
tional complexity.

Space Complexity

The space complexity of machine M is defined by
the number of cells scanned by M . A Space(f(n))
problem constitutes one computable in f(n) tape
cells by a deterministic Turing Machine. Simi-
larly, a NSpace(f(n)) problem yields a compu-
tation in f(n) tape cells by a nondeterministic
Turing Machine.

Intuitively, space, unlike time, can be reused. The
fundamental factor behind the power of space and
the theorems that follow, lies in this very notion
of reusable space. A machine M cannot belong
to a space complexity class of greater measure
than time, since M cannot explore more tape
cells than the number of time units for which
it executes. On the contrary, a problem often
requires a small fraction of space in comparison to
time. For example, a function featuring multiple
recursive calls only consumes the space of one,
since each recursive call executes sequentially,
reusing the space of the previous.

Savitch’s Theorem

Probably the most important discovery in space
complexity is the Savitch’s theorem, and for that
reason I’ll present the proof in considerable detail.

Theorem. NSpace(f(n)) ⊆ Space(f 2(n))

Proof. Let N be the NTM computing a problem
in f(n) space. We want to construct a determin-
istic machine M to compute the same problem
in space f 2(n).

First, how do we simulate a nondeterministic
computation deterministically in general, while
remaining problem oblivious? We must explore
N at the machine configuration level. Specifi-
cally, we determine if we can reach an accepting
configuration from the initial. Because a nonde-
terministic execution visually resembles a tree,
we cannot simply store one configuration at a
time on M ’s tape without loosing track of our lo-
cation and what branches we’ve already explored.
Consequently, to anticipate the worst case, we
could store all the N configurations on the M
working tape with states Q and the tape alphabet
Γ, but this amounts to

|Q|f(n)|Γ|f(n) = O(f(n))2O(f(n)) = 2O(f(n))

configurations and an exponential amount of
space unacceptable for our purposes.

To simplify convention, let’s define the config-
uration reachability problem by the function
canyield(c1, c2, t), which returns true if we can
reach configuration c2 from c1 in t steps or less.
We want to solve canyield(cstart, caccept, 2

df(n)),
choosing d appropriately to insure a sufficient
upper bound on the number of configurations.

1

Provided that a sequential solution has failed,
let’s attempt a divide and conquer solution:

canyield(c1, c2, t)
if t = 1:

if c1 = c2, or c2 reachable in one step:
accept.

else reject.
if t > 1:

for each configuration cm of N :
canyield(c1, cm, t/2)
canyield(cm, c2, t/2)
if both accept: accept

reject

We still examine a hopelessly exponential number
of total configurations with two recursions per
all possible configurations per level. However,
the number of recursive levels, which concerns
us most in space complexity by virtue of reusing
space, results in

f(t) = f(t/2) +O(1) = O(log t)

= O(log 2O(f(n))) = O(f(n))

And since we require O(f(n)) space per call
to check for terminating conditions, M uses
O(f 2(n)) space overall.1

PSPACE and NPSPACE

Analogous to the time complexity classes P and
NP, PSPACE represents problems solvable in
polynomial (nk) space on a deterministic TM,
and NPSPACE those solvable polynomially on a
nondeterministic TM. However, in light of Sav-
itch’s theorem, PSPACE = NPSPACE, an incred-
ible result demonstrating the resolution of any
NPSPACE problem by a deterministic TM with
equal space efficiency (to a difference of only a
polynomial factor.) It follows that

P ⊆ PSPACE

and NP ⊆ NPSPACE = PSPACE

⇒ NP ⊆ PSPACE

1The canyield algorithm also demonstrates that a general
reachability problem consisting of a graph with n
vertices is deterministically solvable in O(log2 n) space.

reemphasizing the power of space with respect to
time.

PSPACE Completeness and
TQBF

Similar to time complexity class completeness,
language B is PSPACE-complete if 1) B ∈
PSPACE and 2) for all A ∈ PSPACE, A poly-
nomially reduces to B (B is PSPACE-hard). And
similarly to the SAT problem polynomially re-
duced from all other NP problems by the Cook-
Levin theorem[2], the TQBF problem serves this
baseline role in establishing PSPACE complete-
ness.

TQBF = set of all truly fully quantified boolean
formulas.

A TQBF formula Φ in prenex normal form incor-
porates all quantifiers prior to the clauses as in
the following example:

Φ = ∀x∃y[(x ∨ y) ∧ (x ∨ y)]

Theorem. TQBF is PSPACE complete.

Proof. TQBF ∈ PSPACE:

We demonstrate this by a function f that receives
a formula Φ as input and iterates through all vari-
ables one by one, generating two recursive calls:
one with the modified formula setting the variable
to true, and the other set to false. Depending
on the type of quantifier (∀ or ∃), the function
asserts appropriately. If no variables are left, the
function simply evaluates the remaining boolean
equation.

Provided that f receives input of length n, evalu-
ating one variable per recursion call, it generates
O(n) recursion levels, each using maximum O(n)
space to store the formula or evaluate the base
condition. The overall computation thus runs in
PSPACE.

TQBF is PSPACE-hard:

Let A be a PSPACE problem decidable by ma-
chine M in polynomial space. We’ll construct a
polynomial reduction from A to TQBF as follows,
such that M accepts input w iff formula Φ is true.

2

Similar to the Cook-Levin and the Savitch’s the-
orem, we explore M at the configuration level,
and construct Φ to represent a successful path
from the start to the accept configuration of M .
Specifically, let Φc1,c2,t be true iff M can reach
configuration c2 from c1 in under t steps. Φ then
becomes Φcstart,caccept,2df(n) , with constant d prop-
erly set to represent a sufficient total number of
configurations in M .

ci actually encodes an entire M configuration
consisting of O(nk) variables, in accordance with
PSPACE constraints.

Our base case involves t = 1, in which case the
respective formula represents either a check for
c1 and c2 equality or a single-step transition.

For t > 1, using divide and conquer, we can
recursively construct the formula as follows:

Φc1,c2,t = ∃cm[Φc1,cm,t/2 ∧ Φcm,c2,t/2]

This reduction would work if not for the space
doubling in size at each recursion level. After
log t = log(2O(f(n))) = O(f(n)) recursion levels,
Φ will occupy O(f(n))2O(f(n)) = 2O(f(n)) space,
an unacceptable exponential amount.

A clever formula redesign leads to the following:

Φc1,c2,t = ∃cm∀(c3, c4) ∈ {(c1, cm), (cm, c2)}[Φc3,c4,t/2]

This reduces Φ from two to only one recursive
subformula, at the expense of a constant size
formula increase. With log t = O(f(n)) recursion
levels, and O(f(n)) space consumed per level, the
resulting formula size results in O(f 2(n)).

The reduction trivially works and requires only
polynomial time to generate the top-level formula.

L and NL

L and NL represent logarithmic space bound
classes. As we must still read the entire input,
we require a two-tape Turing Machine model con-
taining 1) a read-only input tape that always
remains on the portion with input, and 2) a work
tape with usual properties and the only tape
contributing to space constraints.

Class L is decidable in log space on a deterministic
TM, and class NL similarly on a nondeterministic
TM.

Our definition of a TM configuration also changes
to incorporate the two tapes. The total number
of tape configurations for machine M with input
w of length n and space f(n) work tape becomes

|Q|nf(n)|Γ|f(n) = n2O(f(n)) = 2O(f(n)) if f(n) ≥ log n

NL-Completeness and PATH

A language B is NL-complete if 1) B ∈ NL
and 2) for all A ∈ NL, A reduces to B in log
space (A ≤L B), or rather, B is NL-hard. The
log-space reducibility is particularly important,
as the reduction complexity cannot exceed the
complexity of the problem we’re reducing to in
order for A to actually use the reduction as the
problem decider.

Another condition for the log-space reducibility is
a 3-tape TM model: machine M computing the
function f(w) with 1) a read-only input tape, 2) a
write-only output tape with a forward-only tape
head, and 3) a read/write work tape of O(log n)
symbols.

The same reduction implication implies: A ≤L B
and B ∈ L⇒ A ∈ L, although involving a more
complex proof, omitted here.

Let us define the PATH problem as a set of all
directed graphs G and two vertices s and t, such
that G contains a path from s to t.

Theorem. PATH is NL complete.

Proof. PATH ∈ NL:

Nondeterministically proceed from one vertex to
the next, storing only the current vertex on the
work tape and the number of vertices traversed.
If we reach t, accept. If we traverse more than
|V | vertices, reject.

For all A ∈ NL,A ≤L PATH:

We’ll construct < G, s, t > such that graph G
contains a path from s to t if and only if a non-
deterministic TM N computing A can reach the
accepting configuration caccept from the initial

3

cstart. For each configuration of N , create a ver-
tex, and generate an edge (c1, c2) ∈ E if and only
if c2 ∈ δ(c1), or rather, if configuration c1 can
yield c2.

The reduction works as N accepts iff some accept-
ing branch exists iff exists a path from cstart to
caccept. We also satisfied the log-space constraint,
as the work tape stores only O(1) configurations
at a time, each consisting of state, pointers to the
two tape locations, and the two respective tape
symbols, all manageable in O(log n) space.

Corrolary. NL ⊆ P

Proof. Suppose A ∈ NL. Then

A ≤L PATH, as we’ve just demonstrated.

⇒A ≤P PATH (log space requires only polynomial time)

⇒A ∈ P , since PATH ∈ P . Ex: SSSP algorithm.

⇒NL ⊆ P

References

[1] Michael Sipser. Introduction to the Theory
of Computation. Course Technology, Boston,
MA, third edition, 2013.

[2] Michael R. Garey and David S. Johnson.
Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman
& Co., New York, NY, USA, 1990.

4

